EXAM SETS & NUMBERS (PART 2: INTEGERS AND MODULAR ARITHMETIC),

November 8th, 2023, 8:30am–10:30am, Aletta Jacobshal 01 S19-Y14.

Write your name on every sheet of paper that you intend to hand in.

Please provide complete arguments for each of your answers.

This exam consists of 3 questions.

You can score up to 6 points for each question, and you obtain 2 points for free.

In this way you will score in total between 2 and 20 points.

- (1) For $k \in \mathbb{Z}_{>0}$ consider the numbers $a_k := (42 \cdot 10^k 6)/18$.
 - (a) [2 points]. Explain why $a_k \in \mathbb{Z}$ for all $k \in \mathbb{Z}_{\geq 0}$.
 - (b) [2 points]. Prove that $11 \nmid a_k$ holds for all $k \in \mathbb{Z}_{>0}$.
 - (c) [2 points]. Show that $13|(a_{8112023}+4)$.
- (2) (a) [3 points]. Take $n \in \mathbb{Z}$ such that $2 \nmid n$, and let $a \in \mathbb{Z}$ satisfy $\gcd(a,n) = 1 = \gcd(a+2,n)$. Prove that in $\mathbb{Z}/n\mathbb{Z}$ the element $\overline{(a)}^{-1} \overline{(a+2)}^{-1}$ is a unit.
 - (b) [3 points]. Determine the number of positive integers n between 0 and 420 such that n is a unit modulo 70.
- (3) (a) [3 points]. Compute the last 3 decimal digits of 3^{402} . (Hint: it helps to first determine $\phi(1000)$, with ϕ denoting the Euler phi function.)
 - (b) [3 points]. Suppose $n, m \in \mathbb{Z}$ satisfy gcd(n, m) = 1. Prove that $nm | (n^{\phi(m)} + m^{\phi(n)} 1)$.